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quence of these additional effects there may be large 
differences between observed and theoretical direc- 
tions, and curved dislocation lines may occur. In such 
cases the determination of Burgers vectors from the 
directions of dislocation lines is questionable or im- 
possible. 

Conclusion 

This study gives a further confirmation that the direc- 
tions of grown-in straight dislocation lines are in many 
cases predominantly influenced by the tendency to 
minimize the elastic dislocation energy per unit growth 
length. Some consequences resulting from this theory 
and concerning the effect of elastic anisotropy and the 
determination of Burgers vectors, as well as the in- 
fluence of the lattice structure are discussed. These 
subjects, however, require further investigations which 
this work may stimulate. 
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On the Reliability of the ~z Relation. I. Real Structures in P2~[c 
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It is shown for real structures in P21/c that the percentages of failures of the ~2 relation do not agree 
with the theoretical values based on the probability formula. Moreover there is some evidence that 
the probability of a multiple-sign relation is less reliable than that of a single-sign relation. In practice 
therefore, the probability formula cannot be used to estimate the reliability of a sign indication. An 
alternative method is proposed, in which only the ten to twenty triplets with highest EEE product are 
used directly. All other signs have to be determined by at least two independent sign indications. It is 
also shown that in difficult cases the strengthened quartet relation [Schenk (1973). Acta Cryst. A29, 
77-82] is very helpful. 

Introduction 

During the last decade the number of successful struc- 
ture determinations by means of direct phasing has 
increased enormously. The ~a relation 

OH ~KIEKEH-KI(OK-I-OH-K) 
- -  ~, [EKEIt-K] (1) 

K 

has proved to be the most successful phase relationship. 
In eentrosymmetric space groups a probability formula 
(6) is associated with the Y2 relation. 

In our laboratory a large number of centrosymmetric 
structures have been solved by means of the symbolic- 
addition method (Karle & Karle, 1966), in which a 
rule of thumb based on the probability formula (6) is 
used for the acceptance of sign indication. The rule 
says that a sign indication is accepted if the probability 
(6) fulfills the condition P + ( H ) > A  or P + ( H ) <  1 - A ,  
in which for instance A = 0.97, as suggested by Karle & 
Karle (1966). If the probabilities from (6) are reliable 
then for all structures the same value of A should lead 
to a correct sign determination. However, in our 
experience A must be given a wide variety of values 
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(from 0-98 up to 0.99999) in order to arrive at the cor- 
rect solution, so that the usefulness of (6) in real struc- 
ture determinations is doubtful. 

The purpose of this paper is to present full details of 
the ~2 relationships for a number of structures in space 
group P21/c in order to show the discrepancies between 
the theoretical and experimental probabilities of the 
triplet sign relations. Furthermore the way in which 
the apparent practical difficulties in the sign determina- 
tions may be remedied is indicated. 

Theory of the probability relations 

The theory of the probability relations is based on the 
assumption that the positions of atoms are random 
variables. This implies that the theoretical results are 
averages obtained for all conceivable combinations of 
atomic positions. It is known that overlap of Patterson 
peaks decreases the reliability of these results (Cochran, 
1958). Thus when probability relations are applied to 
individual structures it may be expected that structures 
without Patterson overlap, that is to say structures 
without physical reality, will give the best fit with the 
theoretical results. Physically significant structures, 
however, in which considerable Patterson overlap 
occurs, will be expected to show discrepancies. 

It is not the purpose of this paragraph to go into the 
details of the theory [see e.g. Karle & Karle (1966) and 
Klug (1958) and the references cited there], but two 
expressions have to be mentioned here: 
(a). The probability of the truth of a sign relation 

s(H)s(K)s(H- K ) =  + 1 (3) 

is given by 

P + (EnE~Ea_ K) = ½ + ½ tanh 0.30.~3/21EnEKEn_ KI (4) 

N 
in which a, = ~ Z~ (N is the number of atoms in the 

J= l  
unit cell and Z is the number of electrons of an atom). 
(b). The probability that 

s(H)=s(~ EKEn_K) (5) 
K 

is given by 

P+(H)=½+½ tanh 030'2 -3/2 IgnlY gKgn_~. (6) 
K 

Both expressions have been derived by Cochran & 
Woolfson (1955) using the assumption of randomness. 
Actually (4) and (6) are approximations and with a 
more exact treatment Klug (1958) proved that the 
probability given by (4) is an underestimate, especially 
for larger values of IE~EKEn_x[. 

From (4) it follows that the percentage of failures of 
the ~z relation for a given value of E3=0"30"~ "z/2 
IE~EKE~-KI is given by 

F(E3)=[1-P+(IEnEKEn_~I)]x 100%. (7) 

The results of Klug (1958) suggests that true percentages 
of failures should be less than F(E3). 

The reliability of the single-sign relation 

Expression (7) has been checked for nine structures of 
space group P21/c, all except one consisting of nearly 
equal atoms. The normalized structure factors EH were 
calculated from the measured intensities applying the 
Wilson temperature and scale parameters. Cell con- 
stants, intensity statistics and other relevant informa- 
tion are given in Table 1. Judging from the ([EI 2) 
values, the Wilson parameters are reasonable approxi- 
mations with the exception of structure 4. The signs of 
the structure factors were taken from the final least- 

Table 2. Total number (NR) of triplet sign relations above a variable E3 = 0"2 "3 /2  a31E~E~EH_KI value with 
the percentage (%) of correct sign relations for nine structures in space group P21/c 

Ea Structure 1 Structure 2 Structure 3 Structure 4 

NR % NR % NR % NR % 
15 1 100 
10 8 100 
8 30 100 
6 83 100 1 100 
5 149 99-3 4 100 3 100 
4-0 266 99.6 22 100 2 100 12 100 
3"6 348 99"7 32 100 3 100 19 100 
3.2 457 99.3 61 100 7 100 34 100 
2.8 612 99.3 117 100 17 100 66 100 
2.6 733 98.9 141 100 26 100 91 100 
2.4 922 98.5 179 99.4 41 100 124 100 
2.2 1120 98-0 255 99.2 67 98-5 174 100 
2-0 1355 97.4 336 98.8 114 99.1 266 100 
1.8 1725 96.5 473 97.1 206 99-5 394 100 
1-6 2235 95.2 706 95.3 349 99.1 597 100 
1-4 2935 94.0 1094 94-9 616 97.4 961 99-2 
1.2 1764 93.7 1130 96.3 1597 98.3 
1-0 2910 92.4 2173 93.9 2782 96.8 
0.9 3842 91.1 3089 92.1 3798 95"7 
0.8 5104 89-7 4595 90.1 5299 94-2 
0.7 6941 87.7 6817 88.0 7509 91.7 

Structure 5 

NR % 

1 100 
1 100 
5 100 
9 100 

17 100 
32 100 
52 100 

103 98.1 
196 96"4 
378 96-8 
763 95.0 

1578 92"7 
2334 91.1 
3422 88.9 
5116 87.0 

Structure 6 Structure 7 Structure 8 Structure 9 

NR % NR % NR % NR % 

1 100 
1 100 1 100 
3 100 7 100 1 100 
7 100 13 100 5 100 

11 100 25 110 14 100 3 100 
27 100 48 100 40 100 11 100 
33 100 77 100 61 100 17 100 
42 100 110 100 87 100 26 100 
67 100 166 98-8 135 100 35 100 

109 100 270 98.1 217 99-1 63 100 
177 100 456 96"5 345 98.3 135 99-3 
274 99.6 751 96-5 549 97-6 229 99.1 
456 97.8 1300 94-3 870 96.8 468 97.9 
813 95.2 2303 9 3 " 5  1 5 1 1  95.8 908 95-6 

1607 92.8 4206 90.5 2905 93.4 1837 94.0 
2319 91 -1  5796 88.8 4123 92.1 2706 92.8 
3437 89.2 8202 87.4 5952 89.7 4004 90.9 
5039 86.5 11660 85.5 8749 87.4 6173 89.2 

A C 29A - 2 
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squares cycles. For 8 structures all triplet relations 
down to Es--0"7 have been calculated and for structure 
1 the lower limit is 1.4. In Table 2 the total number of 
relations above a variable E3 value, B, is given together 
with the percentage of correct relations. In Fig. 1 the 
percentage of failures of the ~2 relation is given for 
groups of at least 40 triplets relations with E3 values 
within B+O'I>E3>B. The theoretical curve (7) is 
represented by the solid line F. 

From Fig. 1 and Table 2 it can be seen that the 
results of the ~2 relation are fairly divergent. Structure 
1 shows a percentage of failures which is about three 
times as high as the theoretical percentage, whereas 
the failure curve of structure 4 is better than the theo- 
retical line. Therefore in practice the failure percentages 
of the ~.z relation differ to such an extent that the 
probability formulae (4) and (6) cannot be used as a 
measure of the correctness of a computed sign. 

In our opinion the most important origin of the 
discrepancy between theory and practice is the fact 
that atomic positions are not random, but show 
regularities caused by bonding and packing, which are 
reflected in an appreciable overlap in the Patterson 
function. In a subsequent paper we shall demonstrate 
the effect of order in the atomic parameters by means 
of model structures. 

Another cause of the lack of agreement between 
theory and practice will be the accidental and syste- 
matic errors in the IE, I values of real structures. The 
accidental errors in E ,  are larger for larger values of 0 
and should be used to weight the triple products Es 
The systematic errors are caused by introducing the 
Wilson thermal and scale parameters instead of the 
true absolute scale parameter and individual anisotrop- 
ic thermal parameters for all atoms. This can be partly 
remedied by measuring the absolute scale directly 
(Coppens, 1973) and calculating overall anisotropic 
corrections to the Wilson temperature parameter (Mas- 
len, 1968). With respect to the latter, one has to be 
careful because anisotropy in the weighted reciprocal 
lattice need not be due to anisotropy of the thermal 
behaviour of the atoms but may be induced by the 
atomic arrangement instead. 

Reliability of multiple-sign indications 

Expression (6) gives the probability of a multiple-sign 
indication (5) and in view of the results of the preceding 
paragraph formula (6) will also be unreliable. 

In order to solve structures it is necessary to use 
multiple-sign relations as well as single-sign relations. 
In our automated procedure a sign indication is ac- 
cepted if the signs s(H) of all component single indica- 
tions are consistent and YEs > LIM. In the sign deter- 

K 

ruination of, for instance, structure 2 a value of LIM = 
2.6 would be expected to lead to a correct solution, 
because according to Table 2 all single relations with 
Es > 2.6 are correct. However in this way a set of in- 

18! 
t7~ 

15 
14 
13 

12 t - 

10 

9 

8 

7 

6 

5 

4 

3 

2 

t 

0 Structure 1 
;, 3 

o 
structure 9 

T • /o error er ie  

• o/! 
D 

/A 
• • + 

e / / X  

• A--D 
. o  

n • • 

0 9 
o : 

D X / 9  ~) + 

n • 
0 n " Y  0 ~) + 

• ~ ,D __D/f x + * 

X AXADX 
, + _ + a . +  - + - + - 4  - - 25 20 15 

9 + 

- 3/; 

Fig. 1. Percentage of  errors of  the ~2 relation as a funct ion of  
E3=asCrf312]EnEKEn_~:] for  nine structures in P2,/c. For  
reference the curve F(E3), based on the probabi l i ty  fo rmula  
(4), has been indicated. 

correct signs is produced and in fact LIM = 4  has to be 
used in order to arrive at the correct solution. From 
this and other analogous experiences a preliminary 
conclusion may be that if E3, obtained from one single 
relation, is equal to ~.E3, obtained from a multiple one, 
the reliability is larger for the single relation. This 
statement cannot at present be formulated quantita- 
tively. 

Structure determination 

Although the practical results do not agree with the 
theory, structure determinations by means of the ~2 
relation should be possible because in all ~2 sets the 
percentage of correct information is large (see Table 2). 
However in order to arrive at the correct solution a 
sign-acceptance criterion has to be used adapted to the 
E3 values. 

In our procedure we use ~E3 for estimating the 
reliability of a phase as long as we do not have a better 
measure. In order to overcome the difficulties described 
in the preceding paragraph the sign-acceptance criter- 
ion ~E3 > LIM is used with LIM chosen such that only 
the triplets corresponding to the 10 to 20 strongest E3 
values (Table 2) are accepted as correct. All other signs 
have to be determined by at least two relationships. 

Eight out of nine structures could be solved by means 
of this procedure. In seven structures the solution of 
best ~z consistency proved to be correct. In the sign 
determination of structure 1 the solution with the third 
best ~2 consistency was correct. 

The sign determination of structure 7 failed using 7 
starting reflexions and L I M = 3 . 6  (only the 13 highest 
E3 values were used directly). None of the 16 resulting 
~2 solutions contained the correct signs. With L I M =  
5"0 and a starting set of 26 reflexions the sign determina- 
tion proceeded smoothly. This starting set was con- 
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structed by means of the mixed triplet and strengthened 
quartet relationships (Schenk, 1973) on the basis of the 
same 7 reflexions with an acceptance criterion LIM = 
5.5. 

The author is indebted to Dr C. H. Stam for stimula- 
ting discussions about the work and the manuscript, 
and to Professor dr B. O. Loopstra for his critical 
reading of the manuscript. 
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The Elastic Properties of Beryl 
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Using the pulse-superposition method, the second-order elastic stiffnesses of aquamarine were deter- 
mined to be Cl1=3"085, C33=2"834, Ct2=1"289, C13= 1.185, C44=0"661 Mbar. Results for goshenite 
beryl are very similar. Initial pressure derivatives were also determined. 

The second-order adiabatic elastic stiffnesses of beryl 
and their initial pressure derivatives at 25 °C have been 
measured by the pulse-superposition method. Previous 
measurements (Voigt, 1887; Madelung & Fuchs, 1921; 
Bridgman, 1928; Sundara Rao, 1948) are not in agree- 
ment: bulk moduli measurements, for instance, differ 
by 20 %. Chung & Buessem (1968) have questioned the 
validity of the elastic constants of beryl for a different 
reason. The compression anisotropy calculated from 
the elastic coefficients appears inconsistent with aniso- 
tropies observed in other hexagonal crystals. 

Two Brazilian specimens were used in the investiga- 
tion, a pale-blue aquamarine and a colorless goshenite 
beryl. The chemical compositions determined by wet 
chemical and spectroscopic analyses are presented in 
Table 1. As expected, the aquamarine is richer in iron, 
but the goshenite specimen contains more alkali ions. 
Densities were determined by the hydrostatic weighing 
method described by Smakula & Sils (1955). The goshen- 
ite specimen was slightly denser (2.7238+0.0003 g 
cm -3) than the aquamarine (2.6976+0.0003 g cm -3) 
because of the higher concentration of alkali ions and 
water molecules trapped in the structure. Both densi- 
ties are significantly larger than the X-ray density of 
2-640 g cm -3 calculated for a hexagonal unit cell mea- 
suring a=9.215, c=9.192 A, and containing two ideal 
formula-units, 2 Be3A12Si60~s (Swanson, Cook, Isaacs 
& Evans, 1960). 

* Present address: Laboratory for Crystallographic Bio- 
physics, Department of Physics, Rensselaer Polytechnic 
Institute, Troy, New York 12181, U. S. A. 

Table 1. Chemical analyses o f  two Brazilian beryls 

Analysts: J. DeVine, J. Bodkin and R. Raver. 

Ideal Pale blue Colorless 
Be3AI2Si6Ols aquamarine goshenite 

BeO 13-96 wt. % 13.60% 12.66 
A1203 18.97 18.20 18.24 
SiO2 67-07 65-92 65-18 
Fe203 0" 167 0-006 
FeO 0" 11 0"08 
TiO2 0.020 0.011 
Li20 0-03 0"69 
Na20 0-13 0-79 
K20 0"013 0"05 
Rb20 0"001 0-021 
Cs20 0"075 0" 16 
H20 + 1"36 1"68 
H20 - 0"02 0"02 

Not detected: MnO, CaO, MgO, Cr203, Nb2Os, ZrO2, 
SnO2, Sc203. 

Flawless rectangular prisms about 1 cm on edge were 
cut from the two large hexagonal crystals using the 
natural prism and pinacoid faces as a guide. After ori- 
entation by the back-reflection Laue method, the crystals 
were ground and polished with silicon carbide powders 
and diamond paste. Using specially-designed holders, 
orientations of better than 10 minutes of arc and 
flatnesses of 3 × 10 -5 cm were achieved. Dimensions 
were measured with a Lufkin micrometer prior to the 
determination of the elastic constants from acoustic 
velocities. 

In the pulse-superposition method (McSkimin & 
Andreatch, 1962; McSkimin, 1965) a high-frequency 
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